Week 11 - Monday

COMP 2100




= What did we talk about last time?
= Euler practice

= Network flow

= Started B-trees



Questions?




Project 3




B-trees




= A B-tree of order m has the following properties:
1. The root has at least two subtrees unless itis a leaf

2. Each nonroot and each nonleaf node holds k keys and k + 1 pointers
to subtrees wherem/2 <k<m

3. Each leaf node holds k keys where m/2 <k<m
4. All leaves are on the same level
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= Insert the following numbers:

= 8669811510094 827566892 89385388



= When the list of keys drops below half m, we have to
redistribute keys
= In the worst case, we have to delete a level



= Instead of requiring every non-root node to be half full, every
non-root node must be at least 2/3 full

= Key redistribution becomes more complex

= However, the tree is fuller



= Essentially, make a B-tree such that all the leaves are tied
togetherin a linked list

= |t's also necessary that all keys in a B*-tree appear as leaves

= Some other variations are possible, but we'll end the list here
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Hamiltonian Style

Are you ready to get Hamiltonian with it?




= The Eulerian Cycle problem asked if you could start at some
node, cross every edge once, and return to the start

= The Hamiltonian Cycle problem asks if you can start at some
node, visit every node only once, and return to the start

= In other words, find a tour

= Sounds easy, right?



= On this graph:



= Now, on this graph:
= Thereisn't one!



Hmmm...

= Now, on this graph:






Traveling salesman problem:

Hamiltonian cycle meets shortest path

= Given a graph, find the shortest tour that visits every node
and comes back to the starting point

= Like a lazy traveling salesman who wants to visit all possible
clients and then return to his home



= Find the shortest TSP tour:
= Starts anywhere
= Visits all nodes
= Has the shortest length of such a tour




= Strategies:
= Always add the nearest neighbor

= Randomized approaches
= Try every possible combination

= Why are we only listing strategies?



= So far we haven't given a foolproof solution to TSP

= Let's look at two possibilities:
= Greedy Solution: Pick the closest neighbor
= Brute Force: Try all possibilities



= We are tempted to always take the closest neighbor, but there

are pitfalls
Greedy Optimal



= In a completely connected graph, we can try any sequence of
nodes

= If there are n nodes, there are (n —1)! tours

= For 3o cities, 29! = 8841761993739701954543616000000

= |f we can check 1,000,000,000 tours in one second, it will only
take about 20,000 times the age of the universe to check
them all

= We will (eventually) get the best answer!



= No one knows how to find the best solutionto TSP in an

efficient amount of time
= For a general graph, no good approximation even exists
= For a graph with the triangle inequality, there is an
approximation that yields a tour no more than 3/2 the optimal
= Some variations on the problem are easier than others



= [sTSP the hardest problem there is?
= Are there other problems equally hard?
= How do we compare the difficulty of one problem to another?



= TSP is one of many problems which are called NP-complete

= All of these problems share the characteristic that the only
way we know to find best solution uses brute force

= All NP-complete problems are reducible to all other NP-
complete problems

= An efficient solution to one would guarantee an efficient
solution to all



= Traveling Salesman Problem
= Hamiltonian Cycle (and Path)
= Let's see just a couple more...



= Find the smallest number of colors for coloring nodes such
that no two adjacent nodes have the same color




= What about this graph?




= Like TSP and Hamiltonian Cycle, large graphs get really hard
to find the smallest coloring for

= [t might not be obvious, but graph coloring has practical
applications

= Perhaps the most common example is register allocation
inside of a compiler



= Find the largest complete subgraph in a given graph
= This graph has a clique of size 3



= What about this graph?
= This graph has a clique of size 4
= As before, a large graph can be very difficult




= Not all NP-complete problems are graph problems
= The knapsack problem is the following:

= Imagine you are Indiana Jones
= You are the first to open the tomb of some long-lost pharaoh

= You have a knapsack that can hold m pounds of loot, but there's way
more than that in the tomb

= Because you're Indiana Jones, you can instantly tell how much
everything weighs and how valuable it is

= You want to find the most valuable loot that weighs less than or
equal to m pounds



Upcoming




= Finish NP-completeness and intractability



= Keep working on Project 3
= Due Friday by midnight

= Review chapters 3 and 4 for Exam 2
= Next Monday!

= We'll review for Exam 2 on Friday
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