Week 11 - Monday

COMP 2100

Last time

- What did we talk about last time?
- Euler practice
- Network flow
- Started B-trees

Questions?

Project 3

B-trees

B-tree definition

- A B-tree of order m has the following properties:
 - 1. The root has at least two subtrees unless it is a leaf
 - 2. Each nonroot and each nonleaf node holds k keys and k+1 pointers to subtrees where $m/2 \le k \le m$
 - 3. Each leaf node holds k keys where $m/2 \le k \le m$
 - 4. All leaves are on the same level

B-tree of order 4

B-tree practice

- Insert the following numbers:
 - 86 69 81 15 100 94 8 27 56 68 92 89 38 53 88

Deletions

- When the list of keys drops below half m, we have to redistribute keys
- In the worst case, we have to delete a level

B*-tree

- Instead of requiring every non-root node to be half full, every non-root node must be at least 2/3 full
- Key redistribution becomes more complex
- However, the tree is fuller

B+-tree

- Essentially, make a B-tree such that all the leaves are tied together in a linked list
- It's also necessary that all keys in a B+-tree appear as leaves
- Some other variations are possible, but we'll end the list here

Hamiltonian Style

Are you ready to get Hamiltonian with it?

Hamiltonian cycle

- The Eulerian Cycle problem asked if you could start at some node, cross every edge once, and return to the start
- The Hamiltonian Cycle problem asks if you can start at some node, visit every node only once, and return to the start
- In other words, find a tour
- Sounds easy, right?

Find the Hamiltonian Cycle

On this graph:

Find the Hamiltonian cycle

- Now, on this graph:
- There isn't one!

Find the Hamiltonian cycle

TSP

Traveling salesman problem:

Hamiltonian cycle meets shortest path

- Given a graph, find the shortest tour that visits every node and comes back to the starting point
- Like a lazy traveling salesman who wants to visit all possible clients and then return to his home

What's the shortest tour?

- Find the shortest TSP tour:
 - Starts anywhere
 - Visits all nodes
 - Has the shortest length of such a tour

How can we always find the shortest tour?

- Strategies:
 - Always add the nearest neighbor
 - Randomized approaches
 - Try every possible combination
- Why are we only listing strategies?

Best Solution to TSP

- So far we haven't given a foolproof solution to TSP
- Let's look at two possibilities:
 - Greedy Solution: Pick the closest neighbor
 - Brute Force: Try all possibilities

Greedy Doesn't Work

 We are tempted to always take the closest neighbor, but there are pitfalls

Brute force is brutal

- In a completely connected graph, we can try any sequence of nodes
- If there are n nodes, there are (n-1)! tours
- For 30 cities, 29! = 8841761993739701954543616000000
- If we can check 1,000,000,000 tours in one second, it will only take about 20,000 times the age of the universe to check them all
- We will (eventually) get the best answer!

What's the best time for TSP?

- No one knows how to find the best solution to TSP in an efficient amount of time
- For a general graph, no good approximation even exists
- For a graph with the triangle inequality, there is an approximation that yields a tour no more than 3/2 the optimal
- Some variations on the problem are easier than others

Hard problems

- Is TSP the hardest problem there is?
- Are there other problems equally hard?
- How do we compare the difficulty of one problem to another?

NP-completeness

- TSP is one of many problems which are called NP-complete
- All of these problems share the characteristic that the only way we know to find best solution uses brute force
- All NP-complete problems are reducible to all other NPcomplete problems
- An efficient solution to one would guarantee an efficient solution to all

NP-complete problems on graphs

- Traveling Salesman Problem
- Hamiltonian Cycle (and Path)
- Let's see just a couple more...

Graph coloring

 Find the smallest number of colors for coloring nodes such that no two adjacent nodes have the same color

Graph coloring

What about this graph?

Graph coloring

- Like TSP and Hamiltonian Cycle, large graphs get really hard to find the smallest coloring for
- It might not be obvious, but graph coloring has practical applications
- Perhaps the most common example is register allocation inside of a compiler

Maximum clique

- Find the largest complete subgraph in a given graph
- This graph has a clique of size 3

Maximum clique

- What about this graph?
- This graph has a clique of size 4
- As before, a large graph can be very difficult

Knapsack problem

- Not all NP-complete problems are graph problems
- The knapsack problem is the following:
 - Imagine you are Indiana Jones
 - You are the first to open the tomb of some long-lost pharaoh
 - You have a knapsack that can hold m pounds of loot, but there's way more than that in the tomb
 - Because you're Indiana Jones, you can instantly tell how much everything weighs and how valuable it is
 - You want to find the most valuable loot that weighs less than or equal to m pounds

Upcoming

Next time...

Finish NP-completeness and intractability

Reminders

- Keep working on Project 3
 - Due Friday by midnight
- Review chapters 3 and 4 for Exam 2
 - Next Monday!
 - We'll review for Exam 2 on Friday